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PROBLEMS IN STABILITY ANALYSIS OF FINITE DIFFERENCE
SCHEMES FOR HYPERBOLIC SYSTEMS AND RELATED TOPICS

by
Moshe Goldberg

ABSTRACT
T
s'_Rgseargb)cdmpleté&_;nder Grant AFOSR-79-0127 consists

~— Caoy ;. ] . >

mainly of the following topics: (1) Convenient stability
criteria for finite difference approximations to hyperbolic
initial-boundary value problems: theory and applications.
(2) Operator norms, matrix norms, and multiplicativity.
(3) Generalizations of the Perron-Frobenius Theorem and

localization of eigenvalues with maximal absolute value.
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PROBLEMS IN STABILITY ANALYSIS OF FINITE DIFFERENCE
SCHEMES FOR HYPERBOLIC SYSTEMS AND RELATED TOPICS

by
Mashe Goldberg

The purpose of this final scientific report is to summarize my Air
Force sponsored research in stability analysis of finite difference
approximations of hyperbolic partial differential systems and related

topics, during the period October 1979 - April 1983.

1. Convenient Stability Criteria for Difference Schemes of Hyperbolic

Initial-Boundary Value Problems.

Consider the first order system of hyperbolic partial differential

equations
du(x,t)/ot = Adu(x,t)/dx + Bu(x,t) + f(x,t), x 20, t 20,

where u(x,t) is the unknown vector; A a Hermitian matrix of the form

AI ® AH, AI <0,AII> 0; and f(x,t) is a given vector. The problem is

well posed in L2(0,») if initial values
u(x,t) = g(x), x20,
and boundary conditions
I _ e II
u (0,t) = Su " (0,t) + h(t), t 20,

are prescribed. Here uI and uII are the inflow and outflow uanknowns

corresponding to the partition of A, and S is a coupling matrix.
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In the past years, E. Tadmor and I [12, 13] have succeeded in obtaining

easily checkable stability criteria for the above initial-boundary value
problem, where the difference approximation consists of an arbitrary basic
scheme - explicit or implicit, dissipative or unitary, two-level or multi-
level - and boundary conditions of a rather general type.

The first step in our stability analysis was to prove that the
approximation is stable if and only if the scalar outflow components of
its principal part are stable. This reduced the global stability question

to that of a scalar, homogeneous outflow problem of the form

du(x,t)/ot

adu(x,t)/9x, a>0, x20, t20,

u(x,0)

glx), x20; u(0,t) 0, t20.

Investigating the stability of the reduced problem, our main results
were restricted to the case where the boundary conditions are translatory,
i.e., determined at all boundary points by the same coefficients. This,
however, is not much of a limitation since such boundary conditions are
commonly used in practice; and in particular, when the numerical boundary
consists of a single point, the boundary conditions are translatory by
definition.

Our main stability criteria for the translatory case were given
essentially in terms of the boundary conditions. Such scheme-independent
criteria eliminate the need to analyze the intricate and often complicated
interaction between the basic scheme and the boundary conditions; hence
providing convenient alternatives to the well known stability criteria of
Kreiss [20] and of Gustafsson, Kreiss and Sundstrom [17].

In our analysis we assumed that the basic scheme is stable for the

pure Cauchy problem and that the approximation is solvable. Under these

-




basic assumptions - which are obviously necessary for stability - we
found that if the basic scheme is dissipative, then the reduced problem
is stable if the boundary conditions are solvable and satisfy the von
Neumann condition as well as an additional simple inequality. If the
basic scheme is unitary, then instead of satisfying the von Neumann
condition, we required that the boundary conditions be dissipative.

Having the new stability criteria, we studied several examples.

First, we reestablished the known fact that if the basic scheme is two-level
and dissipative, then outflow boundary conditions generated by horizontal
extrapolation always maintain stability. Surprisingly, we showed that this
result is false if the basic scheme is of more than two levels. Next, for
arbitrary dissipative basic schemes we found that if the outflow boundary
conditions are generated, for example, by oblique extrapolation, by the
Box-scheme, or by the right-sided Euler scheme, then overall stability is
assured. Finally, for general basic schemes (dissipative or unitary) we
showed that overall stability holds if the outflow boundary conditions

are determined by the right-sided explicit or implicit Euler schemes.

These examples incorporate and generalize many special cases discussed

in recent literature such as [2, 3, 12, 16, 17, 19, 21, 27, 28, 30] and
others.

In the past two summers, Tadmor and I [15] were working in order to
extend our stability criteria to include a wider range of examples. The
proposed new criteria will depend on both the basic scheme and the boundary
conditions, but not on the interaction between the two; hence we expect
the new results to be as convenient as our scheme-independent criteria in

{1z, 135). A tivst draft of this work is anticipated in the summer of 1983.




Such contributions should be helpful to engineers and applied

mathematicians in better understanding and exploiting old and new finite

difference approximations to hyperbolic systems.

2. Operator Norms, Matrix Norms, and Multiplicativity.

In the past three years, E.G. Straus and I [7, 8] have continued our
study of sub-multiplicative norms and seminorms on operator algebras - an
important subject in almost every field of numerical analysis and other
areas of applied mathematics. In our work we studied an arbitrary normed
vector space V over the complex field C, with an algebra B(V) of linear
operators on V, and a seminorm N on B(V). If N is positive definite,
i.e., N(A) >0 for all A # 0, then we call N a generalized operator
norm. If in addition, N is (sub-) multiplicative, namely N(AB) S N(A)N(B)
for all A,B € B(V), then N is called an operator norm on B(V).

Given a seminorm N on B(Y) and a fixed constant p > 0, then
obviously Np = UN is a seminorm too. Similarly, NU is a generalized
operator norm if and only if N is. In both cases, Nu may or may not
be multiplicative. If it is, we say that p is a multiplicativity factor

for N.

Having these definitions we proved in {7] the following:

(i) If N is a nontrivial seminorm or a generalized operator norm on

B(V), then N has multiplicativity factors if and only if
Wy s sup{N(AB) : A,B € B(V); N(A) = N(B) = 1} < =,

(ii) If Hy € % then p is a multiplicativity factor for N if and

only if p 2 HyN-




Special attention was given by us to the finite dimensional case where

it suffices, of course, to consider gnxn’ the algebra of n X n complex
matrices. Following Ostrowski [25], we adopt in this case the terms
generalized matrix norm and matrix norm instead of generalized operator
norm and operator norm, respectively. We proved in this case that while
nontrivial, indefinite seminorms on an“ never have multiplicativity
factors, generalized matrix norms always have such factors. In the
infinite dimensional case, however, the situation was less decisive, i.e.,
there exist nontrivial indefinite seminorms and generalized operators on
B(V) which may and may not have multiplicativity factors.

In both the finite and infinite-dimensional cases we proved that if
M and N are seminorms on B(V) such that M is multiplicative, and

if n2¢f >0 are constants satisfying

A

tM(a) < N(A) € @A) ¥ A € B(Y)

then any p with p 2 n/{? is a multiplicativity factor for N.
Using this practical result we showed, for example, that if V is

an arbitrary Hilbert space and
r(A) = sup{l (Ax,x)| : x€V, kxl =1}, A € B(V),

is the classical numerical radius, then pr 1is an operator norm if and
only if p 2 4. This assertion is of interest since the numerical radius
r is perhaps the best known nonmultiplicative generalized operator norm
(1, 4, 18], and it plays an important role in stability analysis of finite
difference schemes for multi-space-dimensional hyperbolic initial-value

problems [14, 22, 23, 29].
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multiplicativity factors ~- if and only if C is not a scalar matrix and

Our next step was to investigate C-numerical radii which constitute
a generalization of the classical radius r, defined by us in (5] as J

follows: For given matrices A,C€ C the C-numerical radius of A

~nxn’
is

*
ro(a) = max{| tr(CU AU) | : U nxn unitary}.

We have shown [5] (compare [24]) that r. is a norm on ann -- and so has

tr C # 0. Such multiplicativity factors for the above r. were found in

c
(5-9].

Our most recent effort in this area was to obtain multiplicativity

factors for the well known Rp-norms (1 £p g
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It was shown by Ostrowski [25] that these norms are multiplicative if and
only if 1 $p 2. For p 22 we have shown [10] that p is a

nl-Z/p; thus, in

multiplicativity factor for IAIp if and only if p 2
particular, obtaining the useful result that nl-zlplAIp is a multiplicative

norm on C .
~nxXn

3. Generalizations of the Perron-Frobenius Theorem and Localization of

Eigenvalues with Maximal Absolute Value.

In many instances one is interested in localizing an eigenvalue of
maximal absolute value for a given matrix. The most famous result in this
vein is the Perron-Frobenius Theorem which states that a matrix with non-
negative elements has at least one nonnegative eigenvalue of maximal

absolute value,




Last summer, E.G. Straus and 1 were looking for generalizations of
this celebrated theorem that locate an eigenvalue of maximal absolute
value within a certain angle of the complex plane depending on the angle
which contains the elements of the matrix. More precisely, let Aa(u)
denote the family of all n X n complex matrices whose entries are

contained in a sector
S(a) = {z : jarg 2] Sa; O0Sasn fixed}.

For each A € An(a) let B(A) denote the minimal (nonnegative) angle
for which the sector S(B) contains an eigenvalue of A with maximal

absolute value. Thus, defining

Bo(0) = sup{B(A) : A€ A ()}

we posed the problem of finding Bn(u) as a function of & and n.

Since the Perron-Frobenius Theorem states that Bn(o) = 0, a wishful
generalization would read Bn(u) = o. This unfortunately is not so, as
shown by us in {11] where we give a complete description of the 2 x 2
case as well as partial results for n 2 3.

For n = 2, for example, we have

o for a £ n/4
52(“) = a+n/2 for m/4 <a$n/2

n for a > n/2,

where the discontinuity in B,(a¢) is typical for all n. More expected
y 2

properties of Bn(a) are:

(i) Bn(a) 2a for al o an’ ..

(ii) Bn(u) is a nondecreasing function of o and n.

1¢
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NUMERICAL RANGES, EIGENVALUES, MATRIX INEQUALITIES, AND TENSORS
by

Marvin Marcus

ABSTRACT

The results obtained fal. into three separate but
related areas: (1) Structure of the numerical range and
the localization of eigenvalues. (2) Classical matrix

inequalities. (3) Tensors and multilinear algebra.
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NUMERICAL RANGES, EIGENVALUES, MATRIX INEQUALITIES, AND TENSORS

by

Marvin Marcus

The results obtained fall into three separate but related areas:
(1) Structure of the numerical range and the localization of eigenvalues.
(2) Classical matrix inequalities.
(3) Tensors and multilinear algebra.

The work on the numerical range and eigenvalue localization theory
appears in [1, 2, 3, 6, 7, 8, 11, 12]. The numerical range of a linear

operator A is the image of the unit sphere under the mapping

x * (Ax,x)

It is a classical result of Hausdorff and Toeplitz that the numerical
range is a convex region in the plane which contains all the eigenvalues
of A. As such, it is of fundau. tal importance in investigations of
stability of difference schemes for partial differential equations. This
has been pointed out and developed by a number of authors, including

M. Goldberg, one of the investigators on this grant.

In [1), a characterization of unitary operators in terms of a
generalized numerical range is obtained. This is then used to analyze the
structure of linear operators on spaces of matrices which preserve the
numerical range. This work extended earlier results of V.J. Pellegrini

[Studia Math. S& (1975), 143-147).

15
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Items [2] and [3] discuss the structure of the numerical range of

a class of sparse 0,1 matrices. Numerical experiments describing the

structure of higher numerical ranges are included.

In [6], it is shown that the nonprincipal subdeterminants of a
normal matrix satisfy certain quadratic identities. These identities
are used to obtain upper bounds on such subdeterminants in terms of
elementary symmetric functions of the moduli of the eigenvalues. The

same analysis yields lower bounds on the spread of a normal matrix and

on the Hilbert norm of an arbitrary matrix. The results in [7] continue
these investigations. The size of a nonprincipal subdeterminant is

related to the extent to which its main diagonal overlaps the main diagonal
of the containing matrix.

In [8], the numerical range is generalized to several maps by defining

W(A A

Do)

to be the set of points in the complex plane obtained by multiplying the
quadratic forms

(Aixi' xi), i=1,...,k

where x ..,X, are orthonormal vectors.

1’ k
The paper [11] contains three elementary proofs of the difficult
theorem of Goldberg and Straus on numerical radii (M. Goldberg and
E.G. Straus, Linear Algebra and Appl. 24 (1979), 113-131).
In [12], a generalization of the numerical range is defined as

follows: Let 1 Sr $n, A a linear transformation on an n-dimensional

unitary space V and let

G = [G‘:GZ:G3]

16




be an r X 3r matrix. A collection of 2r vectors

 SURRETE 3% 2TEEER

in V 1is said to be a set of G vectors whenever
G, = [(xi,xj)l, G, = l(yi,yj)l, Gy = [(xi.yj)l.
In [12], the structure of the set W(A;G), of values of the form

(Ax),¥p) + o0+ (Ax,y)

where

XygeoogX 400
1’ R vyr

run over all G-vectors is investigated. Specifically, conditions for
W(A;G) to be convex, the origin, or empty are given along with some

upper bounds on the maximum modulus of any element in W(A;G). These

results extend some of the classical results of Hausdorff, Toeplitz, von
Neumann, Fan, Berger, and Westwick concerning higher numerical ranges.

The work on classical matrix inequalities appears in [4, 9, 15].
In a research problem (Notices Amer. Math. Soc. 25(7):506 (1978)), A. Abian
posed a problem related to the classical Cauchy-Schwarz Inequality. Let
V be a unitary space and let A, B, P, Q be linear on V. The question

is: what are necessary and sufficient conditions that
(Av,u) (Bu,v) S (Pu,u)(Qv,v)

for all u,v in V? In [4], this question is completely resolved. In
(9], the same problem is reexamined in a more general setting: Let A,

B, P, Q be n-square nonsingular complex matrices, and for 1 ¢ m<n

17




let U and V be n Xm complex matrices. For n 2 3 necessary and

sufficient conditions are given for the inequality
det (U*AV)det (V*BU) S det (U*PU)det (V*QV)

to hold for all U and V.

The paper [15] gives an elementary proof of an inequality for any
principal subdeterminant of a positive-definite Hermitian matrix A. In
particular, let C be a k-square principal submatrix of the inverse of A.
Let D be the inverse of the principal submatrix of A lying in the
same numbered rows and columns that define D. Then C 2 D where the
inequality sign denotes dominance in the sense that C - D 1is positive
semi-definite Hermitian.

Items [5, 14, 16]) are concerned with tensor spaces and multilinear
algebra. Certain linear groups of operators can be defined in terms of
generalized matrix functions. These groups are characterized in [5]).
This work is related to earlier work of G.M. de Oliveira and J.A. Dias da
Silva.

In [14], an index is defined for spaces of temsors. This index is
computed for the Grassmann space, the tensor space, and the completely

symmetric space.

In [16], a detailed analysis of the equality of decomposable sym-
metrized tensors is described. This work extended earlier work of Freese,

Merris, Pierce, and Williamson.

18
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ELEMENTARY DIVISORS, GENERAL INEQUALITIES, HADAMARD MATRICES,

AND PERMANENTS

by
Henryk Minc

ABSTRACT

My work sponsored by Air Force Grant AFOSR-79-0127
was concerned with the following topics: (1) Inverse
elementary divisor problems for nonnegative matrices.
(2) Bounds for permaneats. {3) Inequalities. (4)
Hadamard matrices. (5) Theory of permanents and its
applications. (6) The van der Waerden permanent
conjecture. (7) Minimum of the permanent of a doubly

stochastic matrix with prescribed zero entries.
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ELEMENTARY DIVISORS, GENERAL INEQUALITIES, HADAMARD MATRICES,
AND PERMANENTS

by

Henryk Minc

1. Inverse Elementary Divisor Problems for Nonnegative Matrices.

One of the most important unsolved problems in linear algebra is
the inverse eigenvalue problem for nonnegative matrices: to find
necessary and sufficient conditions that a given n-tuple of complex
numbers be the spectrum of a nonnegative matrix. A parallel problem for
doubly stochastic matrices in unsolved as well. The inverse elementary
divisor problem for doubly stochastic matrices, the determination of
necessary and sufficient conditions that given polynomials be the
elementary divisors of a doubly stochastic matrix, contains the inverse

eigenvalue problem, and obviously it is also unsolved.

In [4) it is shown that for any real o, - E%T <a <1, and any
positive integers L TEEREL whose sum is n~1, there exist doubly
stochastic n X n matrices with elementary divisors A-1 and (A-u)ei ,
i=2,...,m. This result implies that for any n 2 3 there exist doubly
stochastic n X n matrices which have no roots. In [4] the inverse
elementary divisor problem is considered for doubly stochastic matrices
moduloe the inverse eigenvalue problem: given a doubly stochastic matrix,
does there exist a doubly stochastic matrix with the same spectrum and

arbitrarily prescribed elementary divisors comsistent with the spectrum

that do not include (A-l)k with k > 1 (otherwise the answer would
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clearly be in the negative). The question is answered in [4] in the
negative in general, and in the affirmative in case the given matrix is
positive, diagonalizable, and with real eigenvalues.

In [S] it is proved that given any positive diagonalizable matrix,
there exists a positive matrix with the same spectrum and with any pre-
scribed elementary divisors consistent with the spectrum. A parallel
result for doubly stochastic matrices was also proved, thus extending
the result in [4] to diagonalizable positive doubly stochastic matrices

with complex, not necessarily real, eigenvalues.

2. Bounds for Permanents.

In [2), bounds for permanents of real matrices are obtained. In [1)
Friedland's lower bound for the permanents of doubly stochastic matrices
is utilized to obtain an improved lower bound for the d-dimensional dimer

4:

w

problem for d

Ad ~ % log(2d) - %.
For the all important 3-dimensional case it is known that

0.418347 ¢ Aa < 0.54827,

where the lower bound is due to Hemmersley and the upper bound is due to
Minc. In order to improve these bounds it is necessary to obtain sharper
bounds than the currently known bounds for the permanents of
(0,1)-circulants with 6 ones in each row. For this purpose, permanents
of some 850 (0,1)-circulants were computed, of orders up to 18 x 18,

with 3, 4 or 6 ones in each row. No definite results have been obtained

so far.
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Some of these inequalities were used to establish bounds for permanents

of nonnegative matrices.

4. Hadamard Matrices.

Let A(n) be the maximum of the absolute value of the determinant of
nxn (1, -1)-matrices. Fréchet asked if there exists a simple analytic
expression for A(n) as a function of n, and he proposed the problem
of determining an amalytic asymptotic expression for A(n). It is known
that A(n) & nn/2’ and that equality, for n > 2, can hold only if
n = 0mod 4. In [7] relevant known results for all n are surveyed, and
it is concluded that Fréchet's question should be answered in the negative,

although

log A(n) ~ % log n.

5. Theory of Permanents and Its Applications.

The last five years witnessed an increased research activity in the
theory of permanents and its applications. At least 75 new research
papers on the subject and similar publications were written or were actually
published during the period 1978-1981; this represents nearly 20% of the
total literature on permanents in the last 170 years.

In [9]) the developments in the area are surveyed. The paper includes
a detailed discussion of Egorycev's proof of the van der Waerden conjecture
(see below), a section on bounds of permanents of (0,1)-matrices, and on
their applications to the dimer problem, to the problem of enumeration of
Latin rectangles, and other topics. The paper contains a report on the
current status of each of the 20 conjectures and 10 problems, which
were listed as unsolved in Minc's "Permanents" (1978). Additiomal 10

conjectures and 3 problems are proposed.
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6. The Van der Waerden Permanent Conjecture.

Research in the theory of permanents and its applications in the last
two years has been strongly influenced by the recent solutions of the van
der Waderden permanent conjecture by Egorycev and by Falikman. They both

proved that
per(S) 2 nt/n" (1)

for any n X n doubly stochastic matrix S. In addition, Egorycev showed
that equality can hold in (1) if and only if S is the n X n matrix

all of whose entries are 1/n. In paper [9] a version of Egorycev's

proof is given. 1In [6] two alternative variants of his proof are pre-
sented. In [8] versions of Egoryfev's proof and of Falikman's proof are

given in detail.

7. Minimum of the Permanent of a Doubly Stochastic Matrix with Prescribed

Zero Entries.

Paper [10] is a study of properties of matrices with minimum permanent
in a face of Qn’ the polyhedron of doubly stochastic n X n matrices,
i.e., for doubly stochastic matrices with zero entries in prescribed fixed
positions. Egoryfev proved that all permanental cofactors of a matrix
with minimal permanent in Qn are equal. This implies that in such a
matrix any pair of rows (columns) can be replaced by their mean without
change in permanent. This averaging process leads to a proof of the
van der Waerden conjecture. Unfortunately, in the case of doubly
stochastic matrices with prescribed zero entries such an averaging method

has only a restricted application (viz., to rows (columns) with same
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prescribed zero pattern). In [10] it is proved that permanental co-
factors of a matrix with minimal permanent in a face of Qn cannot
exceed the permanent of the matrix; and that the permanental cofactors of
entries which are not prescribed, are actually all equal to the permanent
of the matrix. This result is then used to obtain minimum permaneants in
faces of Qn in which all prescribed zeros are restricted to two rows or
columns, or in which the prescribed zeros form a submatrix.

In some cases in which prescribed zeros are located in many rows
(columns), Falikman's method seems to be more appropriate than that of

Egory¥ev. Some partial results, as yet unpublished, have been obtained.
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APPLICATIONS OF NUMBER THEORY TO COMPUTATION

by

Morris Newman

ABSTRACT

Work on the Air Force Project was entirely concerned
with the application of number theory to high speed digital
computation, using as tools residue arithmetic, p-adic

arithmetic, and multiprecision arithmetic.
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APPLICATIONS OF NUMBER THEORY TO COMPUTATION

by

Morris Newman

Work on the Air Force project was entirely concerned with the

application of number theory to high speed digital computation, using

as tools residue arithmetic, p-adic arithmetic, and multiprecision

arithmetic. Numerous programs for the now defunct ILLIAC4 were prepared

which took advantage of the parallel processing featuress of this machine.

In particular, programs were prepared using residual arithmetic for the

following:

(1) The exact solution of an integral system of linear equations, and
the exact computation of the determinant of the system.

(2) The determination of the exact inverse of an integral matrix using
minimal storage.

(3) The determination of the rank and a basis for the null space of an
integral matrix;

(4) The determination of all rational solutions of an integral system
of linear equations.

(5) The determination of the eigenvalues of a rational symmetric triple
diagonal matrix to any desired accuracy.

(6) The computation of the permanent of a matrix.

(7) The determination of the Hermite normal form of an integral matrix.

(8) The determination of the exact characteristic polynomial of an
integral matrix.

(9) The determination of the Smith normal form of an integral matrix.
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In addition, a program was prepared (for a serial machine) which
finds the exact solution of a linear system by p-adic arithmetic, rather
than residue arithmetic. The advantage is that only one prime modulus is
necessary, and the numerous local solutions modulo differing primes are
replaced by simple matrix by vector multiplications modulo the single
prime. In additionl the Chinese Remainder Theorem is not required; only
some rather simple multiprecision multiplications, divisions, and
additions need be performed. The time required to find the exact solution
in this way compares very favorably with the time required to find an
ordinary solution.

Finally, work on this project resulted in three Master's theses

supervised by M. Newman.
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SINGULAR VALUES, INVARIANT FACTORS,
THE MATRIX EXPONENTIAL, AND EIGENVALUES

by

Robert C. Thompson

ABSTRACT

The results achieved centered around the properties of
singular values, of invariant factors of matrices, of the
exponential function acting on matrices, and of eigenvalues
of finite matrices. Continuing study progress has been made
on a wide class of matrix questions, some of which are self
contained, and others lead to some of the most fundamental

aspects of linear algebra.
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SINGULAR VALUES, INVARIANT FACTORS,
THE MATRIX EXPONENTIAL, AND EIGENVALUES

by

Robert C. Thompson

The results achieved centered around the properties of singular
values of invariant factors of matrices, of the exponential function
acting on matrices and of eigenvalues of finite matrices, with all these
topics and some others subsumed under the general theme of inequalities
in linear algebra. Some typical results are cited below. Because of the

many results achieved, only representative ones can be mentioned here.

1. Properties of Singular Values.

Some of the deepest questions in linear algebra fall under this
heading, it being realized during the review period that the proper
approach to them is through the study of the Lie algebras and Lie groups.
The efforts to develop this approach during the review period will yield
many results in future years.

Items [1]), [4], [7], [10], [14], [16], and [18] present new results
on singular values. Only (7] will be described here. In (7] a new type
of numerical range for matrices was defined, and a complete analysis of
it is given. Let A be a fixed matrix. The numerical range in question is
the principal diagonal of all matrices vaut  as U ranges over all
unitary matrices (t denotes transpose). The complete characterization
found for this numerical range is given in terms of the singular values

of A.
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2. Properties of Invariant Factors.

These are the invariant factors that appear in the Smith canonical
form for integer or polynomial matrices. They were investigated in a
variety of ways, in [2]), [3]), [5), [6), (8], [9), [12]), [17], [24}, [25]),
and [26]. In [6] conditions were given on how invariant factors behave
when matrices add, and these conditions were further investigated in [5],
[25], and [17). The conditions were a set of divisibility relations, and
[25] attempted to discuss the sufficiency of these conditions. The
difficulties encountered are analyzed in [17]. 1In [9] the existence and
uniqueness of invariant factors was discussed using a new method.

In [12] some of the author's previous work on the eigenvalues of sums
of Hermitian matrices was utilized to give a short proof of an elegant
inequality pertaining to the behavior of invariant factors under matrix
multiplication. This inequality is just one of a large class found by
the author in a previous review period, but never published. The merit
of [12] is the simple proof it gives of ome inequality from this large

class.

3. The Matrix Exponential.

A key, and rather fundamental, conjecture was formulated, namely, if

A and B are Hermitian matrices, then unitary matrices U and V

ca . . -1 -1
exist such that elAelB = el(UAU +VBY ). A number of results concerning

this conjecture appear in [11], [20], [21]}, and [17]. Partial proofs

are known for the conjecture, and it is known how to formulate it in Lie-
theoretic terms. If A and B are not Hermitian, the same conjecture
can be formulated (with U, V now just nonsingular, not necessarily

unitary). It has been proved (in [20]) that this latter conjecture can
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be valid only for matrices A, B sufficiently near zero. The conjecture
is important because it bears on the relationship between a Lie group and

its Lie algebra.

4. Properties of eigenvalues.

Paper [16] investigated the relationship between the diagonal
elements and the eigenvalues of a normal matrix. It is a long open
question to clarify this relationship. Paper [16] showed that a rather
natural condition evolving from the author's work on singular values
could not give the full answer to this question, even though it yielded

infinitely many constraints,

5. Embedding Properties.

Linear algebra is full of results determining when one matrix can be
embedded in another. There is a large amount of already existing research
on this theme under the heading of unitary dilation theory. Paper {10]
showed that, in spite of the impressive quantity of unitary dilation
results in the functional analysis literature, there are many as yet un-
touched ramifications in related directions. Specifically, it was shown
how dilations to doubly stochastic matrices, to unimodular (integer)
matrices, to complex orthogonal matrices, instead of to unitary matrices,
lead to many questions, some of which can be solved. Although [10] gave

many results, its significance is the hints it gives for future directions

of research.

6. Matrix Inequalities.

One of the most fundamental inequalities in mathematics is the
triangle inequality, and in an earlier period it was found how to extend
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it to a matrix valued version: Given matrices A and B, there exist
unitary matrices U and V such that |A+B| & UlAIU-1 + VIBIV-I,

where {+«| denotes a matrix valued absolute value acting on matrices.
Further investigation of this inequality was carried out in [14] and [1].
There is related number theoretical research to be reported in [19].
Multiplicative versions of the matrix triangle inequality have also been

investigated, with partial success.
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